Tetrahedron Letters No. 12, pp 1079 - 1080, 1977. Pergamon Press. Printed in Great Britain.

CONFORMATIONAL STUDIES BY DYNAMIC NMR. IX¹ ACTIVATION PARAMETERS FOR THE BARRIER TO C-N ROTATION IN N,N-DIMETHYLBENZAMIDINE : A CORRECTION

> Lodovico Lunazzi Istituto di Chimica Organica, Università, Bologna, Italy Alessandro Dondoni Istituto Chimico, Università, Ferrara, Italy Gaetano Barbaro and Dante Macciantelli Laboratorio C.N.R., Ozzano Emilia, Italy

(Received in UK 4 February 1977; accepted for publication 14 February 1977)

The entropies of activation obtained from the complete line shape analysis (CLSA) of NMR spectra of thermally induced rotational processes are usually negligible¹⁻⁴ and in the few cases in which large positive or negative values have been reported it is likely that experimental errors are involved.⁴⁻⁶

Owing to our interest in the rotational barriers around the C-N bond,⁷ there came to our attention a study⁸ on <u>N,N</u>-dimethylbenzamidine, $C_{6}H_{5}C(=NH)-NMe_{2}$, in CDCl₃ as a solvent, where apparently there is a large ΔS^{\neq} value. This becomes evident when the reported⁸ E_a value (18.2 kcal mol⁻¹) is compared with ΔG^{\neq} (11.3 kcal mol⁻¹)⁹ obtained by approximate equations.¹⁰ This energy barrier E_a has been accepted and even quoted as ΔG^{\neq} elsewhere.¹¹

We have repeated the rate-temperature study on the title compound¹² in the same solvent (CDCl₃) and the spectra were analysed by CLSA.¹³ The E_a value (14.3±.3 kcal mol⁻¹) calculated therefrom, although smaller than reported,⁸ still shows a considerable difference from ΔG^{\neq} (11.4±.1 kcal mol⁻¹) owing to a substantial positive ΔS^{\neq} value (11.0±1 cal mol⁻¹ deg⁻¹). The identical values of ΔG^{\neq} obtained from CLSA and the Gutowsky-Holm equation¹⁰ prove that the approximation of measuring ΔG^{\neq} at the coalescence temperature is correct in this case. Since temperature measurements have been made with a good degree of accuracy,¹⁴ the most likely source of error for the 'anomalous' ΔS^{\neq} is the determination of the linewidth (and consequently of T₂) in the absence of exchange. This occurs expecially when measurements are made over a range of temperature close to the freezing point of the solvent⁵ where the linewidth is strongly viscosity dependent, thus preventing its use as a measure of T₂ at higher temperatures.

In order to show that this fact is responsible for the high $\mathbf{E}_{\mathbf{a}}$ value reported in ref. 8, which we attributed to an incorrect determination of $\Delta \mathbf{S}^{\mathbf{r}}$, we have repeated the rate-temperature study in CHF₂Cl since this solvent has a lower freezing point (-150°C) than CDCl₃. In this case the linewidth is not appreciably affected by chan-

ges of viscosity of the solvent in the range of temperature over which the rotational process has been observed (-48°- -67°C). As expected, Δs^{\neq} was found to be negligible and E_a almost identical with ΔG^{\neq} (Table). The slight decrease of ΔG^{\neq} in CHF₂Cl, which becomes more significant in (CD₃)₂CO, with respect to CDCl₃, indicates the existence of a solvent effect on the rotational process.

TABLE : Methyl Chemical Shift Differences (at 60 MHz), Coalescence Temperatures, and Activation Parameters for the C-N Rotation in C_6H_5C (=NH)-NMe₂.

Δg[≠]ª Δh[≠]ª Δs[≠]^b Е_да Δv (in Hz) T_c (°C) log A Solvent 11.0+.05 11.4+.4 2.1+1 11.9+.4 13.6+.4 14.8(-88°C) -59 CHF C1 CDC1,C 17.8(-71°C) -49 11.4 9.9 $(CD_3)_2CO = 15.0(-93^{\circ}C)$ -78 $\frac{a}{b}$ kcal mol⁻¹; $\frac{b}{b}$ cal mol⁻¹ deg⁻¹; $\frac{c}{c}$ plus 10% n-pentane to decrease the freezing point.

The present work underlines the importance of a proper choice of the solvent and of CLSA for a correct determination of E_a and Δs^{\neq} from DNMR studies and emphasizes that ΔG^{\neq} is a more reliable parameter than E_a or ΔH^{\neq} since its evaluation is not affected by experimental errors due to some physical properties of the solvent.

REFERENCES AND NOTES

- Part VIII, L. Lunazzi, G. Placucci, and G. Cerioni, <u>J.C.S. Perkin II</u>, in press.
 I.O. Sutherland in 'Annual Reports on NMR Spectroscopy', Vol. 4, E.F. Mooney Ed., Academic Press, New York, 1971, p. 71.
- ³ F.A.L. Anet and Ragini Anet in 'Determination of Organic Structures by Physical Methods', Vol. 3, F.C. Nachod and J.J. Zuckerman Ed., Academic Press, New York, 1971, p. 344.
- ⁴ 'Dynamic NMR Spectroscopy', L. Jackman and F.A. Cotton Ed., Academic Press, New York, 1975.
- ⁵ R.E. Carter, T. Drakenberg, and C. Russel, <u>J.C.S. Perkin II</u>, 1690 (1975).
- ⁶ C. Piccinni-Leopardi, O. Fabre, and J. Reisse, Org. Mag. Resonance, <u>8</u>, 233 (1976).
- ⁷ A. Dondoni, L. Lunazzi, P. Giorgianni, and D. Macciantelli, <u>J. Org. Chem.</u>, <u>40</u>, 2979 (1975).
- ⁸ G. Schwenker and H. Rosswag, <u>Tetrahedron Lett.</u>, 2691 (1968).
- ⁹ Due to the lack of data in ref. 8, we have determined the methyl signal splitting and the coalescence temperature (see Table) from which ΔG^{\neq} was calculated applying the Gutowsky-Holm approximation.¹⁰
- ¹⁰ H.S. Gutowsky and C.H. Holm, J. Chem. Phys., <u>25</u>, 1228 (1956).
- ¹¹ G. Fodor and B.A. Phillips in 'The Chemistry of Amidines and Imidates', S. Patai Ed., Interscience, London, 1975, ch. 2, p. 109.
- ¹² A. Dondoni and G. Barbaro, J.C.S. Chem. Commun., 761 (1975).
- ¹³ G. Binsch and D.A. Kleier, Program 140, Q.C.P.E., Indiana Univ., Bloomington.
- ¹⁴ Spectra were recorded on a JEOL 60 MHz instrument. Errors on temperature readings (thermocouple, before and after each spectral determination) were ±0.5°C.